
Tetrahedron Letters 48 (2007) 1903–1905
Sequential peptide ligation by using a controlled cysteinyl
prolyl ester (CPE) autoactivating unit
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Abstract—A peptide building block containing a cysteinyl prolyl ester (CPE) autoactivating unit was ligated with a cysteinyl peptide
under native chemical ligation conditions. The CPE autoactivating function can be controlled by the protection of the thiol group,
permitting the selective ligation of the peptide building block at either the C or N terminus.
� 2007 Elsevier Ltd. All rights reserved.
The chemical ligation of peptide segments, prepared by
either chemical or biological methods, is a widely used
technique in polypeptide synthesis.1 Ligation chemistry
has been developed based on the use of peptide thio-
esters. In the thioester method, partially protected
peptide thioesters are used as building blocks and are
condensed in the presence of silver ion as an activating
reagent for the thioester.2 Native chemical ligation per-
mits perfect chemoselective ligation, in which an unpro-
tected peptide thioester is ligated with a cysteinyl peptide
in an aqueous buffer solution.3 In the extended chemical
ligation strategy, a thiol auxiliary, attached to the N-ter-
minal amino group, is used instead of a cysteine residue
and side chain non-protected peptide thioesters are used
as building blocks, thus maintaining the advantageous
features of the native chemical ligation reaction.4

The sequential ligation procedure can be used to prepare
polypeptides containing over 100 amino acid residues by
using more than three peptide building blocks, and is
performed stepwise in the carboxy terminal to the amino
terminal (C to N) direction.1 An N-terminally-protected
peptide thioester is used to prevent intramolecular liga-
tion (cyclization) or oligomerization via intermolecular
ligation reactions. We wish to describe herein, an alter-
native strategy in which a cysteinyl prolyl ester (CPE)
is used as an autoactivating unit,5 in which the direction
of ligation is regulated by the controlled CPE unit.
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We previously reported on N to S acyl shift reactions
at a thiol containing residue such as a cysteine residue
and a thiol auxiliary for peptide ligation under acidic
conditions.6,7 On the other hand, in 1985 Zanotti et al.
reported that a diketopiperazine thioester, cyclo-
(–Cys(COCH2Ph)-Pro-), is produced when a p-nitro-
phenyl (Np) ester, PhCH2CO–Cys(StBu)-Pro-ONp,
was treated with tributylphosphine under aqueous con-
ditions.8 Based on these observations, we designed a
CPE autoactivating unit for peptide ligation. A peptide,
containing a CPE unit, can be prepared by standard
Fmoc solid phase peptide synthesis (SPPS), because it
does not contain a thioester moiety, and the CPE unit
can be used to activate the peptide for ligation with a
cysteinyl peptide. CPE peptide 1 reacts with cysteinyl
peptide 3 to give ligated peptide 4 via a diketopiperazine
thioester 2, which is spontaneously formed in the reac-
tion (Scheme 1, R2 = H). The autoactivating function
of the CPE unit is quenched by introducing a protecting
group to the thiol group (Scheme 1, R2 = protect-
ing group).5 Therefore the C-terminal CPE peptide
would be applied to ligation in both directions, C to N
and N to C, by controlling the CPE function.

The strategy for the sequential ligation is shown in
Scheme 2. When the thiol group in the CPE unit is pro-
tected, the ligation reaction proceeds at the N terminus
of peptide 6 (first ligation of 5 and 6). When the protect-
ing group is removed, ligation can be carried out at the
C terminus (second ligation of 9 and 7).

The sequential ligation using the CPE peptide was
demonstrated by the synthesis of a model peptide,
H-Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-Cys-His-
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Scheme 1. Peptide ligation using a cysteinyl prolyl ester (CPE) as an
autoactivating unit.
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Figure 1. RP-HPLC of sequential peptide ligation reaction mixtures.9

(a) First ligation at the N terminus of peptide 6. (b) Removal of the
protecting group of peptide 8. (c) Second ligation at the C terminus of
peptide 9. (*) A compound derived from peptide 7. Column: YMC-
Pack ProC18 (4.6 · 150 mm), eluent: aq acetonitrile containing 0.1%
TFA, flow rate: 1.0 mL/min.
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Pro-Ile-Arg-Leu-Cys-Asp-Ile-Leu-Leu-Gly-NH2 (10), as
shown in Scheme 2.9 A peptide containing the protected
CPE unit, H-Cys-His-Pro-Ile-Arg-Leu-Cys(4-MeOBzl)-
Pro-OCH2CONH2 (6),10 was first ligated at the N
terminus, with a peptide thioester, H-Leu-Lys-Asn-
Thr-Ser-Val-Leu-Gly-Ala-Ala-SCH2CH2CO-Leu-NH2

(5) in sodium phosphate buffer (pH 7.2) containing 6 M
guanidine (Gdn) and 2% 4-trimethylsilylthiophenol
(v/v).11 The RP-HPLC of the reaction mixture after
24 h is shown in Figure 1a. The ligated product,
H-Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala-Cys-His-
Pro-Ile-Arg-Leu-Cys(4-MeOBzl)-Pro-OCH2CONH2 (8),
was isolated in 72% yield. The 4-methoxybenzyl group
of peptide 8 was then removed by treatment with 1 M
trifluoromethanesulfonic acid (TFMSA) in trifluoroace-
tic acid (TFA) containing 1 M thioanisole on an ice bath
for 1 h (Fig. 1b). Peptide 9, purified by RP-HPLC, was
isolated in 90% yield. The next ligation at the C terminus
peptide A
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Scheme 2. Sequential peptide ligation strategy in the C to N direction, followed by the N to C direction. –R1 = –CH2CH2CO-Leu-NH2, –R2 =
–CH2C6H4OCH3-p, –R3 = –CH2CONH2, peptide A = Leu-Lys-Asn-Thr-Ser-Val-Leu-Gly-Ala-Ala, peptide B = His-Pro-Ile-Arg-Leu, peptide
C = Asp-Ile-Leu-Leu-Gly-NH2.
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was carried out with peptide 7 in a 0.1 M sodium bi-
carbonate solution (pH 8.3) containing 10 mM tris-
(hydroxypropyl)phosphine (THP) and 50% acetonitrile.12

After 24 h, product 10 was isolated by RP-HPLC
(Fig. 1c) in 64% yield.

A kinetically controlled convergent native chemical liga-
tion procedure has recently been reported, in which the
ligation of cysteinyl peptide thioesters was controlled by
taking advantage of the difference in reactivities between
S-alkyl and S-aryl thioesters.13 The CPE unit can be
inactivated by the thiol protecting group safely without
cyclization or oligomerization, and is ready for ligation,
after removal of the protecting group. Thus, our ap-
proach represents a promising alternative for achieving
ligation in either direction.

In summary, a peptide containing a CPE unit is used as a
building block for ligation with a cysteinyl peptide in a
manner similar to that used in native chemical ligation.
The autoactivating function of the CPE unit can be
quenched by introducing a protecting group to prevent
inter- and intramolecular self ligation, and the direction
of ligation at the N or C terminus can be controlled, thus
providing a flexible ligation strategy in polypeptide syn-
thesis using multi-component peptide building blocks.
Modifications, such as phosphorylation, glycosylation,
methylation, acylation, and stable isotope labeling,
would be introduced at the final ligation step at either
the N- or C-terminal part of the peptides selectively.
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